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Abstract
The dyadic Green’s function for an electric current source placed in a rectangular

waveguide is derived using a magnetic vector potential approach. A complete solution for the
electric and magnetic fields including the source location is obtained by simfgeerdiftion of

the vector potential around the source location. The simpéahtiation approach which gives
electric and magentic fields identical to an earlier derivation is overlooked by the earlier workers
in the derivation of the dyadic Green’s function particularly around the source location. Numeri-
cal results obtained using the Green'’s function approach are compared with the results obtained

using the Finite Element Method(FEM).

l. Introduction
Analysis and design of dipole, monopole, or aperture radiator to excite high intensity

electromagnetic (EM) fields inside a reverberation chamber can be done using an integral
equation approach. The EM fields inside a reverberation chamber due to a radiator can be
determined by weighting an appropriate dyadic Green’s function with an assumed antenna
current. The Electric Field Integral Equation (EFIE) is then set up by forcing the total tangential
electric field on the antenna surface to be zero. Using the Method of Moments (MoM), EFIE is
then reduced to a matrix equation which can be solved for the antenna current. From the current,
the EM field radiated by the antenna inside a reverberation chamber is determined. Also the
input impedance of the antenna as a function of its location and frequency can be determined.
This work is divided into two parts. In the first part we derive the appropriate dyadic Green’s
function for an electric current source located inside a rectangular waveguide andRetatied

steps involved in this derivation are reported in this document. The second part of this work,

which will be reported in subsequent documents, consists of an application of the dyadis Green’



function to analyze a dipole antenna placed in a reverberation chamber.

Knowledge of a dyadic Green'’s function for cylindrical waveguides and cavities is
essential for analyzing and designing antennas and arbitrarily shaped objects placed inside a
cylindrical waveguide and cavity [1,2]. A detailed derivation of a dyadic Gséenction for the
rectangular waveguide was presented &y[J]. In deriving these dyadic Gresrunction valid
for both source and source free regions, an additional term must be added to the classical
representation of the field expressions [4]. To include the additional term in the classical
representation,al [5] has presented an approach based upon the use of eigenvector functions. In
[6], an electric-type dyadic Grearfunction is obtained through a magnetic-type dyadic Gseen’
function obtained using the theory of distributions.

The purpose of this communication is to present a simple method using the vector
potential approach to determine the dyadic Green’s function valid in the entire region of a
cylindrical waveguide. For an arbitrarily oriented electric current source in a rectangular
waveguide, expressions for the magnetic vector potential are obtained by solving the
inhomogeneous Helmholtz equation. The electric fields and hence the dyadic @&neetion of
the electric-type is then obtained by taking the derivatives of the magnetic vector potential. In the
process of finding the electric field, if the derivatives of the vector potential are carefully defined,
the additional term discussed in [4-6] automatically follows. Reflection and transmission
coefficients due to a y-directed cylindrical post placed in a rectangular waveguide and excited by
a dominant mode are derived and numerical results are compared with the results obtained by the

Finite Element Method [7].



Il. Theory

Dyadic Green’s Function for an Electric Current Source in a Rectangular
Waveguide

(a) Solution of Inhomogeneous Helmholtz Equation:

9
Consider an infinite rectangular waveguide with electric current sdurce  as shown in

9
figure 1. The electromagnetic fields inside the waveguide dde to  can be determined from

- 1 >

H(xy, 2 = —0OxA 1)
Ho

> —wr, 22 IS

E(xy 2 = %[kOA+ DDD-AEJ ()

0

where the assumed time variatigfi" has been suppressed. The magnetic vector potential

K(x, y, 2 appearing in (1) and (2) statisfies the inhomogeneous wave equation

22 22 7
OAMX Y, 9 +KA(X Y, D = —Hgd (X,Y, 2) (3)
If G(x Y, z XV, Z) is the dyadic Green'’s function for the rectangular waveguide for a unit

impulse current source(x', y', Z)  inside the waveguide, then the magnetic vector potential

e . .
A(X Y, 2 can be written in the form

Ay =[ [ [BOyz%y.2)+ I (Xy.2)dxdydz (@)

Source

Substituting (4) in (3) we get

0°G(.) +K:G(.) = —4gld(x=X) 3(y—Y) (z—2) (5)

A

wherel is an unit dyadic, definedlas XX+yy+2z . Equation (5) may be written in compo-

nent form as



0°G () +KG,, () = —1gd (x=X) 8 (y—Y) 3 (2—2) (6)
0°Gyy () +kgGyy (1) = B (x=X)8(y-Y)8(2-2) (7)
0°G, () +KG,, () = —gd (x=xX)8(y—Y) (z—2) (8)

Because of the nature of the problem and the boundary conditions, the other components of the

dyadic Green'’s functio® (. )  will not be excited and hence are not considered. The solutions

of (6), (7), and (8) may be assumed in the following forms

> 2 , mTx_._[n

G, (.) = z z O,y (X, Y. Z,2) cosB 2 EsmE Ey% 9
m=0n=1
> 2 , . OMTIX n

G(1) = 33 8,(xy. 2.9 sind oY 0
m=1n=0
> 2 , . OmmxJ_.._[n

Gl ) = T Y 0p(X.y. 2.9 sinT o s (a1
m=1n=1

Substituting (9) in (6), (10) in (7) and (11) in (8) we get

0 g2 2 O m N
290 ) G ) Deos BN Y = 8 (x=X) 8(y=Y) 8(2-2)  (12)

0 g° 2 0 . gmmx n
20y () kg, () JSnGEeos Y = B (=) 3(y-Y) 8(2-2)  (13)

0 g¢° 2 U . gm0, n
C20:(-) + K0y, ) DSNTESINTEY S = B (=) 8(y-Y) (2= (14)

z




Wherek|2 = ké— Em—;%?— E%Tg . Multiply (12) bycosEm;D(E,sinEngyE and integrate over

the cross section of waveguide we get

0 42 2 O EnE MK 0. n
12280 ) #( ) [ = ol oSN B (2-2) - (19)
VA

Likewise the equations (13) and (14) yield

0 g° 2 i Emn . OMIX D (NTY'[]

0 d2 2 [ €mEn . OMIX'[_. OnTty' [
Elu?gzz( ) +Ka,,(. )E = —H, b sing 3 CSing b [ﬁS(z—Z) a7)
wheree . anc_, are Neumann’'s numbers [7] and equhl to mfer O and i Adr . In

order to determine the solution of the inhomogeneous differential equation (15) let us

00

~ jk,z
assume O (.) = J’ O, (k)€ " dk, (18)

ik’
Substitution of (18) in (15), multiplying b@rJ *  and integrating over z leads to

OMMTX O, 0Ty’
e€, SO0 2 PO p O jkz

i el
Substitution of (19) in (18) yields
T 1111 AR mnnymoo 1 -ikz jk,z
O () = “02nabCOSU 3 CSing b DIDz STE € dk, (20)
—o0 Dkz - k| O
The integrand in equation (20) has polekat +k , therefore the integral in (20) can be

evaluated using contour integration in the complex domain [8]. Hence



—JHoE mrx n *jk, (z—2)
I ) = Sy 0 o 1Y (22)

where + sign in the exponential is taken wher- 2) <0 and - sign in the exponential is taken

when (z—2) >0 . Likewisegyy( .) and,,(z) are obtained as

—HoERE mTX’ n +jk, (2 2)
Oy () = 2ko ansmD - ECOQE Ey%a (22)
|
—1HoEmE ne DmT[xD Dnny +jk, (z—2)
g,,(-) = in (23)
zz 2k, ab a 0>'No

Substituting (21), (22), and (23) in (9), (10), and (11), respectively, the x-, y-, and z-components
of the dyadic Green'’s function are obtained as

[oe]

_ —HoEp, Dmrrxm Ony' 0. OMIX[_. A0y [ +jk (z-2)
G, (.) = z Z 2k, ab "co 3 Csing b [0S 3 osing b e (24)
m=0n=0
Omx' 0. Onmy' 0. OMixQ . _OnTy [ 2k (z-2)
Gy () = ZO Z 2k ab SiNg—5—- 0°0ST T, PINT P00, OF (25)
m n=0
_ 2o SiMeEmEn . oMK L OnTy' 0. OmTix[_._OnTty [ +ik (z-2)
G,,(.) = ZO zo 2k, ab snLI 3 osing 5 osing 3 osing b (26)
m=0n-=

The x-, y- and z-components of the magnetic vector potential due to the x-,y-, and z-directed

currents are then obtained as

_ —HoEm DmTEXD DnnyD
A = 3 3 o T P

m=0n=0

Omrk' (. _[OnTty' [ #ik (z-2)
I J’J’J (X,Y, Z) cosq 3 Sing b dv (27)

Source



_ J“o Dmrrxm DnnyD
Ay, = Z Z ab a 090 O

m=0n=0

ik, (z— 2)
I HJ (xX,v,2) stm;[X EcooEmgyEpJ dv

Source

—j Mo MTTX n
A, (%Y, 2 zz Oa sinEr > Esing 2

a °"0p O

m=0n=0

Oommix' [ Dnny%etjk. (z-2) dv

J’J’J (X, Y, Z) sinf 3 sing b

Source

(28)

(29)

The expressions in (27)-(29) are the required solution of inhomogeneous Helmoltz equation given

in (3).

(b) Electromagnetic Fields Due to Transverse Currents:

The electric and magnetic fields dueXg(x, y, 2 are obtained from (2) as

Z o HHeEnEnmm 2 omm D MTTX n
EX(AX) - % z z 0 n |:| EF |:| D DT[yED

2k abDDO D_DD DSII_Ib

Omrx' (. _[OnTy' [ #ik (z-2)
J' J’J’J (x,v, z')cos 3 Dsm[_| 5

Source

|
L
e

M s

' 2 —IHoEm MINT_._[OMTX[]___[NTy[]
Ey(AX) e Z n|:| En T[y

> 5k ab 0 a Up sin a DCOSD_D
ko m=0n=0 |
X [, [nTy' [ #ik (z-2)
SOWCEHJ « (X, Y, Z) cosp 3 0sing b CF
£ (A) = Hjw > 2 ﬂ)smsnﬁ. y O Ommx mDnTtyD
2\ T kngOn—02k| ab ‘YU g iy I_IaDS Up U

10

av

(30)

(31)



: MX O, N +jk (z-2)
i J'IJX(X,Y',Z')COSB . Csin Ey%s N

Source

|
o

H (A =

_ 0 © ;jsmen . OMTX[].. |:|nT[yD
Hy(AX) - Z zozkl ab (ijkl) COSU a Dsln|_| . a

m=0n-=

.r IIJX(X', Y, Z) COSBmEXESinEnEy'EPﬂk, (z-2) v

Source

e < ] EmfaOnmyn. OmmxO.. Cnmyr
H: (A = 2 2 3k ab U b 10T 5 (PN O
m=0n=0
. Omrx' 0. _OnTry' [] 2k (z-2)
I J’J’Jx(x,y,Z) COST 3 i b dv
Source
Similarly, the electric and magnetic fields due‘\gix, Y, 2 are obtained as
_ 40 « <« JHoEmEn nomng. oMoy
E(A) = 2 > 2 2k, ab I ba 0T °"0p O
0 m=0n=0
J (X, Y, 2) sinEX O o DMy 0% (2= 2)
[ JJ3y (Y. 2) singm reosr,
Source
_ 40 « < JHoEmEal 2 OnmrPO. ommxO. nmyQ
Ey(A) =77 3 3 Sk ab Mo~ Op 0 SNT g (C0STp 1
0o m=0n=0
o - Ommx' [ _OnTy' [tk (z-2)
J’ J'I\Jy(x,y,z')sml_| 3 [0S b Ba dv
Source
E(A) = 40« < ﬂ)smsn(Jr.k)D M OMTXO, N7y [
(A = k(z)mZOn_ozkI ab OO PO O

11

(32)

(33)

(34)

(35)

(36)

(37)



. - Omx' 0 _nTy'[] ik (z-2)
J’ HJy(x,y,z') sing 3 [0S b Ba dv

Source

e o J EmEn, o\ o OMIXOL  NTY[
HR) = T g ek s oo Y

m=1n=

g - Omx' 0 _Onty' [ ik (z-2)
HJy(x,y,z) sing 3 [0S b %e dv

Source

H,(A) =0

2 < - &mEnO nyO.. OMIXO. CNTy([]
H(A) = zz_k,abLVb o5 °"0p O
0

m=0n=

g - Omx' O _Onty' [ ik (z-2)
HJy(x,y,z) sing 3 [0S b %e dv

Source

(c) Electromagnetic Fields Due to Longitudinal Current:

The transverse electric fields dueAo(x, y, 2 are obtained from (2) as

0 o < JHofmEn .\ OMUO_ MmO, (nmy()
B A =72 2 2 2k ap ) I (F0ST 5 9T O

' +ik, (z—
[[2. ¢,y 2) sing2 ST B (@2

Source

[oe]

Hw < “IHomn .\ DM, OMMX[__[NTy(]
S8 =5z 2 2 o an (T Tp PN 0T O

I IJ-JZ(X', Y, Z) Sian;D(ESianL[y' %eijkI (z-2) v

Source

In obtaining the longitudinal electric field representation dud, i, y, 2

attention is required in performing the differentiation with respect to&,¢w, y, 2

12

(38)

(39)

(40)

(41)

(42)

(43)

, special

. Since



A, (X y, 2 is continuous as a function of z, the first derivativé\pofx, y, 2 is straightforward,

and therefore causes no difficulty. Hence

0 —JHoE — 0
EASR -3 Z ETs ’“b“( £jk) sin T Hsin T
m=0n=0
+ik (z—2'
[[3: ¢y 2) sin X Ds,ngmgy =) 4 4y
Source a

where double prime quantities are the dummy variables of integration. CB%AEIQX, Y, 2 is

discontinuous at = 2' , so in performing the derivativ%%)ﬁz(x, Y, 2 with respect to z
aroundz = 2' , care must be exercised to account for the jurg?éip(x, Y, 2 as one crosses

the z = Z' point. The behavior & = zZ' is properly accounted for by an impulse function at

the point whereas the differentiation throughout the rest of region poses no problem, therefore,

2
0 3 Hlo ménd 20 . OMTX[] DnnyD
At T 3 3 S G Y

m=0n=0

INIEISE A z)stm_Dstnny Eﬁﬂk(z 0 4

Source

Ol Ty
Dsmu b 0

[o] (o] u
+ZZTa
m=0n-=

_[ IIJz(X'I y',z")0(z-2") stm;D( DSInEm;yl Eﬁijkl (z-2) dv' (45)

Source

Integrating orz" in the second term of equation (45) yields

13



2
0

—A (XY, 2
622 i

_”10 “m®n nD ZD [(IMTX[] DnT[YD
Z Z 2k ab U JJsells e Sllin el

m=0n=0

o +jk, (z— 2
IJ’J’JZ(x,y,z')sm a Dsmamgy'gp] av"

Source

O WA e« ommxO Oy OO Ty
E_MOI I Jz(x,y,z)ﬂ)z Z sm,_| 3 osing b csing 3 Dst— X'dy"

source m=0n=0
(46)
Expandingd (x—X") d (y—Y') inthe Fourier sine series over the domamg < a and
O<sy<bwhereO<x'<sa and<y's<sb [9],itcan be shown that
' ' OmrxO_. 0Nty . OmxX'(]_. [Ny [
O0(x=X)d(y-y") = ab Z Z sing Dsml_| b csing a csing 5 O (47)

m=0n=0

Using (47), (46) can be written as

2

0 Juo 0, 200 . Dmnxm DnnyD

o2 2% A = gl ey g Z Z 2k anﬁrk ST C°"Op O
m=0n=0

ik (z-2) , |,
I J’IJ (x", y", z')slnl_| a Dsmamgy%ej dv (48)

Source

The longitudinal component of the electric field is then obtained using (2) as

- J“o EmEn 2 20, ONTX [ DmTyD
Z Z 2k ab Dk 'Dsmu a Dsm'—' b U

E,(A) = 23 (xy, 9 + 32
ko om In=1

Omrx' [0 . [Ty’ [] %k (z-2)
[[2:(x. v, 2) sing2 gsinp o dv (49)

Source

14



The magnetic field components duedp  are obtained as

_ ' nr;  OMTX(] DmTyD
Hx<Az>—222k"'” N 0°0%T 0
m=0n=0
OmTik 0. _OnTty' [ #ik (z-2)
[ [[2(¢.y.2) sinf psine g e dv (50)
Source
_ i €m an[ DmTrxD DnnyD
Hy (A) = Z Z 2k ab a a °"0p O
m=0n=0
OmmX [0 _._[OnTty'[] ik (z-2)
J’ HJ (X, ¥, Z) sinf 3 DS'I_IbEP dv (51)
Source
H,(A) =0 (52)

JEN

The total electric and magnetic fields inside the waveguide diie to  is then obtained by
superpostion of the electromagnetic fields duAXtoAy , J4and

(d) Dyadic Green’s Function for Electric Field:

It is instructive at this point to defined the dyadic Green’s function for the electri field

formulation. To this end, we write the vector wave equation for the electric field as

N
OxOXE — KB = —jooptyd (53)
If the electric field in terms of the dyadic Green’s funct@r(x‘, Y.Z/X Y, 2 is given as
> . —_— - , ,
E(xy 2 = —jprIIJ'Ge(x,y,Z/x, V2 *J (X,y,Z)dv (54)

Substituting (54) in (53) the wave equation for the dyadic Green'’s function of electric-type is

obtained as

15



Ox0xGy () —KoGe( ) = 18(x=%)8(y—y) 8(z~2) (55)

From equations (30)-(32), (36)-(38), (42), (43), and (49), the dyadic Green’s function can be

written as

G.(.) =Gyl.) 5(x—><)6(yk;)/)6(z—z)22 56
0

whereG_, (. ) is given by

_ 1 o o EmEn ik (2-2)
Geo(-)‘kzZ ZZkIabe
om=0n=0

O 2 Omm JOmmx_. Onmy(d . OMiX . N1y o
D[ko‘D?D cosg—SINO, CFosT 5 ooin—, XX

O mronm_. Ommxg_,_ _Onmyd Onmx . 0Ny e
TO R O0p S0 g 0T p 90 3 "0 S

.oy O mmO. Ommxd_. Oy, O 0. 0Nty [
+ (k) o0 3 osing 2 0SNG b [0S 1 0sing b E’zx

O nrOmmn] . Omrix_. Oty . OMiX [ N1y [k«
TOpOa 00T 7 "0 PO 57 0T 59

2 [Onmt - Ommxg,_ _Onmy[d_. Ommx' 0. 0Ty .
+[ko—ugm SN~ £0ST SN, CC0ST 59

o0 N, Ommx . _Onmy (. OmX [0 . ONTy [k
*(#HK) gy T, ooy, N0 5 N0, 7w

q oy Omng, Ommx . Oy 0 OMiX O ONTLY' [ -
*+ (#k) g eosg oSN, ST, OO R

oy OO, OmrXJ . [Nty . OmmX [ . [ONTY [ha
+ (iJkI)DFDSInD_a_DCOSI_I b SN 3 SN b %/z

2 27 . OmmxXO_. Onmy. OMX 0. ONTY [k
+[ko—kZ] smB a EsmB gy%sma 3 EsmB Ey%zz% (57)

16



The expression in (57) is identical to the Green’s function reported in reference [1].

lll. Application

Analysis of Cylindrical Post in a Rectangular Waveguide:

Consider a rectangular waveguide with a cylindrical post as shown in figure 2. Itis
assumed that the waveguide is excited by the dominant mode from the right. For simplicity it is

assumed that the surface current density on the post as
- . . ar]
J = 913K -2 (z-2) (58)

=[>0 - 2 - o .
Let E,J O be the scattered electric field due to the cudent Eand  be the incident electric

field due to TEgmode. The total electric field inside the waveguide is then given by

—->0 = L . -
E.,J O+ E;. Subjecting the total tangential electric field on the surface of the post to zero, we

get following electric field integral equation:

0
CE.0V O+Epq = 0 (59)

where the subscript is for the tangential component. Selecting a testing surface current density

%
asJ; which resides on the cylindrical surface, Galerkin’s procedure reduces equation (59) to
S>>0 — = —
(E ) O J; O+ E;+ J; 0= 0 (60)
Equation (60) can be written in a algebric form as

Z,Jo*V, =0 (61)

17



% % % . . . . . .
J; L.V, = [E * J; [, with the indicated integration performed in

—[>0
WhereZnyO = [E,J O y

cylindrical coordinates. Using (54) and (56), the expressiozgpr is obtained as

T
1 —jkrosin(¢)
—le

k

| costT - 2cos(¢) Fit 62

Z . =—(wu,2b/ a)
yy 0 m=1ZS, !

%
Assuming an unit amplitude dominant mdgéle ~ can be written as

Using (63) the quantitwy can be written as

b2D JJ% [I'IZI n—w% IZI'IZI% sin(¢) g,

Vy = D S cosg—-cos(9) [pkb (64)

The algebric equation (61) can be solvedifpr . The reflected amplitude of the dominant mode

field at a reference planeg = 0 is then determined from
JA/% g0 %21
r = ool @/7 (65)
o - DaD 0

The transmitted amplitude of the dominant mode at the referencezlarizz, is obatined as

0

0y _ ~konglo D JVH( D_D A

=t a (66)

0 |Gz _0Oncfd

O o 000

18



V. Numerical Results

To validate the Green’s function derived in this report, a y-directed cylindrical post of

radiusr, = 0.1cm placed a%x = g, z= 0.55 in a rectangular waveguide with 2.25cm ,

b = 1.02cm and excited by an unit amplitude dominant mode field is considered. The reflection

coefficient at the = 0.0cm plane and the transmission coefficient at the plan&.0cm due
to the presence of the probe are calculated using expressions (65) and (66) and presented in
figures 3 and 4 along with the numerical results obtained using the FEM method [7,8]. The close
agreement between the results obtained from two different numerical methods confirms the

validity of the Green’s functions derived here.

V. Conclusion
The complete dyadic Green'’s function for a electric current source located inside a

rectangular waveguide is derived using the magnetic vector potential approach. The magnetic
vector potential for an electric current source in a rectangular waveguide is obtained by solving
the inhomogeneous Helmhokzquation. The electric and magnetic fields are obtained from the
magnetic vector potential through spatial differentiation. The fields which are valid over the
source region are obtained by carefully differentiating the vector potential around the source
location. The electric and magentic field expressions obtained by the present method are found to
be identical with the expressions reported in the literature. Numerical results on the reflection and
transmission coefficients using the Green'’s function approach are in a good agreement with the

numerical results obtained using the FEM techniques.
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Figure 1 Electric current source inside a rectangular waveguide
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Figure 2 Rectangular waveguide with a cylindrical post parallel to y-axis placec
X=al2,z=5z
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Figure 4 Reflection cok€ient of a y-directed post in a rectangular waveguide as a fur
of frequency.
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Figure 5 Transmission coefficient of a y-directed post in a rectangular waveguide as
a function of frequency.
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